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ABSTRACT - New local FDTD field singularity models have
been proposed. In extension to previous local models, not
only radial field variation but also the geometry of field
lines and curvature of Ampere / Faraday integration
surfaces are taken into account. The method is shown to
provide the same order of accuracy as previously published
specialised higher-order algorithms. Yet contrary to those
methods the gain in accuracy is achieved practically without
any increase of the computing time of FDTD simulations.

1. INTRODUCTION

The necessity to introduce special models for metal
strips and slots into the space-discrete methods like
FDTD or TLM have been recognised since the early stage
of development. Originally, only the factors describing
the actual sub-cellular width of such elements have been
added [1]; later, analytical [2]..[6] or empirical [7]..[9]
expressions for the singular field behaviour have also
been utilised. In the case of separable structures like slots
in waveguide filters, a competitive approach consists in
segmentation and replacing such a slot by its Z-matrix
[1o] or S-matirix [11] description, but this is not
applicable to general 3D geometries.

Usually, the singularity corrections for metal edges or
comers serve to' modify field updating coefficients. Only
in [6] matrix equations and coupling between the
neighbouring nodes are added. Thus [6] appears to be the
most rigorous method proposed so far, but at the expense
of more cumbersome implementation and difficult to
predict numerical properties. The purpose of this work is
to evaluate whether accuracy comparable to [6] can be
achieved by simpler means, It is shown that:

» Earlier methods incorporating the singular field
behaviour [2]..[5] have effectively used only the radial
part of analytical expressions. While these “radial
models” improve the convergence over raw FDTD, they
retain substantial singularity errors.

» The accuracy and convergence can be improved by
an order in magnitude if we incorporate full stereoscopic
expresssions for the singular fields such as shape of field
lines and curvature of integration surfaces.
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» The “stereoscopic models” derived herein require no
additional memory or processing in comparison to “radial
models”. Yet for the reported benchmark they provide the
same order of accuracy as the method of [6).

II. MODEL DEVELOPMENT |

Let us start from the typically used Laurent series for
longitudinal electric and magnetic fields in the vicinity of
a metal edge [2):

E, =X ¢, *sin(kv ¢) ')
where the summation extends over & 1, and:
H,=Z d, " cos(kv ¢) ")

where the summation extends over k 0,
angle ¢ is calculated from one planar surface of metal
edge to the other, and coefficient v is given by:

v=n/(2n-a) 3
where o is the edge angle (e.g. =0 in Fig.1).

Therefrom we can derive the leading term expressions
for radial electric and angular magnetic fields:

E, eprsin(ve) 4)

Hy hy "' sin(v 9) &)

An important consequence of (4)3) is singular
behaviour of the fields along the radial direction. It
entails ¢.g. that the line integrals of radial E-fields along
cell edges needed for Faraday law implementation
become:

JE dr=kEnar - (6
where EAr is the result of integration assumed in raw
FDTD, incorporating linear field behaviour. For example,
the line integral between (xp, ¥o) and (xp+Ax, ¥} in Fig.1
now reads:

JE, dx = k. Ex Ax = k, E{x,+0.5Ax, yp) Ax 0
Such singularity factors k, have also been derived by
previous authors [2]..[5]. For edges aligned with the
FDTD mesh and o=0 as in Fig.1, they become [3](41:

L=02 141 (8

With reference to Fig.1 and [4], these values of k, will
also change as a function of radial edge penetration into
X>xp OF TeCession into x<x, but please note that they will

remain invariant upon cells aspect ratio. They also -
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neglect any angular and vector direction information
contained in eqs.(4)(5). Thus, we shall further call them
“radial models”, and explore as well as correct their
linitations.

For clarity, let us focus on TE polarisation in Fig.1. The
raw FDTD updates the E g value needed in (7) over a time
step At through:

AEqiAt=(H,—H)) [Ay )

This is equivalent to saying that the surface taken for
E-flux integration in Ampere law is a flat rectangle
stretched between the {(xo+0.5Ax, yp-0.5Ay) and
(xs+0.5Ax, yo+0.5Ay) nodes, and that E,» comes as an
average of the so integrated field. However, this is in
contradiction to eq.(4) since the dominant E-field close to
the edge is radial and therefore:

- The surface of integration should be an arc

connecting (xg+0.5Ax, y;-0.54y) and (x+0.54x,

yo+0.5Ay), as shown in Fig.1b, of radius r such that:
= 0.5(A%+Ay%), and length /= Ad.

- The value of AE,; obtained after replacing Ay with /

in (10) does not correspond to the mid-edge value, but

to the value at x=xp+r.

Taking advantage of the above two observations, we can
extend the one-dimensional radial singularity coefficients
k, towards multidimensional (or stereoscopic) coefficients,
k= k, kg, which for the case of Fig.1 become:

10
A rcan 2+ Ay
Av Ax Ax

Furthermore, at E, node of Fig.! we may also take into
consideration angular field behaviour as sin(v¢) in eq.(4),
producing:

11
i 5 an
A% D in[0.5 Carctan 22 a1 + (22
Ay At Av

By physical considerations of field line geometry (see
Fig.1 right), in the haif-plane x<x, eq.(4)(5) can no
longer describe the dominant fields and thus eq.(11) is
irrelevant for £, nodes. For the case of Fig.l, egs.(10)
and (11) yield 1.516 and 1.57, respectively.

Let us note that singularity terms for magnetic fields are
inverses of those for the orthogonal electric fields.
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Fig.1: Electric field patterns (arrows) in the vicinity of
a metal edge (along cell edge for y=y). x<xp) inherent in
earlier radial singularity models [3]..[5] (left}) and
stereoscopic models developed herein (right).

III. TEM WAVE PROBLEMS

The first set of tests concerns a shielded stripline shown
on the left of Fig.2. For the coarsest discretisation of
a=1mm, the strip is resolved into 2 cells and the slots into
3 cells. It is important to note that the three FDTD
algorithms: without any field singularity models, with
radial models as in [2]..[5], and with stereoscopic models
proposed herein — all use the same field updating
equations and differ only in terms of sigularity factors
applied to radia! electric and azimuthal magnetic fields.
From the numerical viewpoint, an optimum value of this
factor will be that which leads to a maximally flat pattern
of characteristic impedance versus discretisation. From
Fig.2 we confirm that the value of k=1.516 dictated by
eq.(10) excellently serves this purpose (red curve), The
value of 1,41 stemming from radial models provides a
substantial improvement over raw FDTD, but
underestimates the strength of singularities. The
simulations with £ 1.53 are overweighed and produce
decreasing values of impedance with refined
discretisation. With k=1.516 at E, nodes and k=1.57 after
(11) at E, node we obtain a curve indistinguishable from
the red one.

Tab.1 lists numerical values of the errors associated
with the curves of Fig.2. The reference value of 99.822(2
has been obtained through the very fine mesh simulation
{a=0.01mm) with k=1.516.
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Fig.2: Characteristic impedance of shielded strip-line for
various values of singularity factors; fom the lowest curve up:

curve 1 — 1.00 (raw FDTD), curve 2 - 1.41 (radial), curve 3 -
1.516 (stereoscopic), curve 4 — 1,53, curve 5 — 1.6.
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raw FDTD radial StereQscopic
Imm 17.64 3.54 0.37
0.5 mm 9.24 1.81 0.24
0.25 mm 4.73 0.91 0.12

Tab.1: Absolute values of relative errors [%] of characteristic
impedance calculation for three FDTD algorithms applied to the
line of Fig.2.

A variety of tests have been run, confirming that the
value of k=1.516 remains adequate for inhomogeneous
(Fig.3) and asymmetrical lines (Fig.4) on equidistant
meshes. Then, non-equidistant - meshes have been
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analysed as in Tab.2. As expected, the raw FDTD is least
accurate, and interestingly its error is govemned by the
larger of the cell dimensions. The radial models maintain
constant factor of k=141 after (8) and hence
underestimate the contributions of E-field integrals along
shorter cell sides. Their error actually increases as one of
the cell dimensions is decreased. The stereoscopic models
are also to some extent susceptible to this phenomenon,
but retain the error at the level of 1% for aspect ratios less
than 4:1.

Zo [Oh
‘sﬁnl m]

1 110.5 14025 '

Fig.3: Characteristic impedance of inhomogeneous shielded
strip line for various values of singularity factors: dotted — 1.00
(raw FDTD), continuous — 1.41 (radial model), dashed — 1.516
(our stereoscopic model).
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Fig.4: Characteristic impedance of shielded strip line with
offset strip, for various values of singularity factors; from lowest
curve up: curve ! — 1,00 (raw FDTD), curve 2 — 141 (radial
model), curve 3 — 1.516 (our stercoscopic model), curve 4 — 1.6,
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travel along the metal edge. Now we will consider the
case of Poynting vector lying in the plane perpendicular
to the edge (in xy-plane of Fig.1), as for TE and TM
modes at cut-off, To ensure that we will be evaluating the
effects of different field patterns and not of drastic
changes in geometry approximation, we need to analyse a
waveguide of cross-section resclved similarly as in our
previous examples, that is, with the coarsest discretisation
into approximately 10x10 cells and strips and slots

-extending over 2-3 cells. Such an example is a finline

available in {6] and shown in Fig.5. Since the method
proposed in [6] is the most advanced so far, we can
consider it as a benchmark reference for the method
proposed herein. '

Fig.5: Geometry of finline
after [6], constructed in a

Smm x 6mm waveguide, with
2mm long fins, shown here
with the basic 0.5mm meshing,

Tab.3 lists cut-off frequencies of TEeel, TEoel, and
TMeel modes obtained: in [6] for the 10x12 mesh shown
in Fig.5; by raw FDTD and with our models, for
successively refined mesh. The reference values are those
produced by our method when converged within  0.0025
GHz, which occurs between 0.005mm and 0.025mm cell
S17e.

Ay | Ax 1 mm 0.5 mm 0.25 mm

1 mm 17.64 14.45 16.49
3.54 5.00 7.96

0.37 0.49 1.73

0.5 mm . 13,98 9.24 846
4.57 1.8 2.39

0.63 0.24 (.38

0.25 mm 12.88 7.24 4.73
7.35 2.53 0.91

[.81 0.16 0.12

Tab.2: Absolute values of relative errors [%] of
characteristic impedance calculated by raw FDTD (top
entries in each table cell), FDTD with radial singularity
models (middle) and FDTD with stereoscopic singularity
models (bottom) for the line of Fig.2.

IV. EXAMPLES OF CUT-OFF PROBLEMS

Examples of Section III confirm high accuracy of the
proposed stereoscopic models for TEM waves, which

Ref, Raw FDTD Our models [6]
[GHz] [%] [%] [%]
a[mm] [ 6.025 | 0.5]0.25] 012505 | 025] 0125 ] 0.5
TE,, | 1591 [-9.24] 446] -1.77]-0.25] -0.12] -0.03[ 0.06
TE..; |30.735]-1.71| -0.86] -0.42| 0.05] -0.02| 0.00{-0.02
TM..; | 55.84 | 240{ 141 0.75( 0.25 0.03( 0.00{ 0.02

Tab.3: Cut-off frequencies [GHz] and relative errors
[%] produced by raw FDTD, our stereoscopic medels, and
the method of [6], for specified cell-sizes.

Let us start with basic observations on the raw FDTD
method. For commensurate geometry resolution the raw
FDTD methed induces (on average) twice smaller errors
into the calculated cut-off frequencies of TE modes
(Tab.3) than into characteristic impedance of TEM modes
{e.g. Tab.1). This is physically justified by the fact that in
TE modes at cut-off only the transverse E-field is
singular, while the longitudinal A-field, by virtue of (2),

“is not. In the TEM wave, both transverse £- and H-fields

are singular as in (4)(5). Their inaccurate approximation
causes inversely proportional changes of unit inductance
and unit capacitance, and hence multiplicative error of
characteristic impedance.
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Please also note that since raw FDTD extrudes metal
edges and corners, characteristic impedance as well as
cut-off frequencies of TE modes are underestimates of
their physical values. To the contrary, cut-off frequencies
of TM modes are loaded with positive singularity errors,
compensating and even outweighing the numerical
dispersion errors. This justifies an apparently good
performance of raw FDTD for high-frequency poorely-
resolved TM mode in Tab.3. It also explains why positive
FDTD errors have been barely reported in the literature,
while downward frequency shift has been considered a
major concern [8].

The proposed stereoscopic singularity models (10)(11)
enhance the values of radial E-fields at metal edges, and
further their linear integrals in the radial direction;
inversely proportionally they suppress the fl-field
contributions. Hence, they serve to restore the singular
field behaviour on FDTD meshes. The singularity factor
of 1.516 previously confirmed optimum for TEM
problems also reduces the errors of cut-off frequencies
extraction to 0.25% on the coarsest mesh. Although not
shown in Tab.3, it has been checked that lower values of
the singularity factor lead to poorer convergence for TE
modes while higher values — to reversed convergence,
that is, overestimating TE and underestimating TM cut-
off frequencies.

V. CONCLUSIONS

New local FDTD field singularity models have been
proposed. In extension to previous local models, not only
radial field variation but also the geometry of field lines
and curvature of Ampere / Faraday integration surfaces
are taken into account. This changes the values of field
updating coefficients, but requires no further modification
of the basic FDTD equations. In spite of such simplicity,
the accuracy obtained is of the same order as that of a
specialised higher-order algorithm of [6].

As an additional outcome, this work recommends the
use of characteristic impedance of TEM lines as the most
sensitive testing function for any new singularity models.
For comparable and reasonably coarse geometry
resolution, raw FDTD produces cut-off frequencies of TM
modes with 2%, TE modes with 9%, while TEM
characteristic impedance with 18% errors. The
stereoscopic models suppress all these errors to below 1%.
The errors of previcusly nsed radial models are by order
of magnitude higher than those of the new approach.
Moreover, in the case of non-equidistant meshing they
rapidly increase and reach haif of raw FDTD errors at 4:1
aspect ratio, while under the same conditions the
accuracy of stereoscopic models oscillates around 1%.

Application of stereoscopic and radial modeis to metal
edges not aligned with the FDTD mesh lines and
additional numerical stability constraints arising
therefrom will be discussed in the Transactions paper.
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