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ABSTRACT-New local FDTD field singularity models have 
been proposed. In extension to previous local models, not 
only radial field variation but also the geometry of field 
lines and cuwature of Ampere / Faraday integration 
surfaces are taken into account. The method is shown to 
provide the same order of accuracy as previously published 
specialised higher-order algorithms. Yet contrary to those 
methods the gain in accuracy is achieved practically without 
any increase of the computing time of FDTD simulations. 

I. INTRODUCTION 

The necessity to introduce special models for metal 
strips and slots into the space-discrete methods like 
FDTD or TLM have been recognised since the early stage 
of development. Originally, only the factors describing 
the actual sub-cellular width of such elements have been 
added [I]; later, analytical [2]..[6] or empirical [7]..[9] 
expressions for the singular field behaviour have also 
been utilised. In the case of separable structures like slots 
in waveguide filters, a competitive approach consists in 
segmentation and replacing such a slot by its Z-matrix 
[lo] or S-matirix [I I] description, but this is not 
apphcable to general 3D geometries. 

Usually, the singularity corrections for metal edges or 
comers serve to modify field updating coefficients. Only 
in [6] matrix equations and coupling between the 
neighbowing nodes are added. Thus [6] appears to be the 
most rigorous method proposed so far, but at the expense 
of more cumbersome implementation and difficult to 
predict numerical properties. The purpose of this work is 
to evaluate whether accuracy comparable to [6] can be 
achieved by simpler means. It is shown that: 
P Earlier methods incorporating the singular field 
behaviour [2]..[5] have effectively used only the radial 
part of analytical expressions. While these “radial 
models” improve the convergence over raw FDTD, they 
retain substantial singularity errors. 
D The accuracy and convergence can be improved by 
an order in magnitude if we incorporate full stereoscopic 
expresssions for the singular fields such as shape of field 
lines and curvature of integration surfaces. 

D The “stereoscopic models” derived herein require no 
additional memory or processing in comparison to “radial 
models”. Yet for the reported benchmark they provide the 
same order of accuracy as the method of [6]. 

II. MODEL DEVELOPMENT , 

Let us start from the typically used Laurent series for 
longitudinal electric and magnetic fields in the vicinity of 
a metal edge [Z]: 

E, = C q Psin(kv $) (1) 
where the summation extends over k 1, and: 

Hz = Z dk #“cos(kv $ (2) 
where the summation extends over k 0, 
angle Q is calculated from one planar surface of metal 
edge to the other, and coefficient v is given by: 

v=K/(2n-a) (3) 
where a is the edge angle (e.g. (Y =0 in Fig. 1). 

Therefrom we can derive the leading term expressions 
for radial electric and angular magnetic fields: 

E, e. P sin(v @) (4) 
H, ho r”.’ sin(v $) (5) 
An important consequence of (4)(5) is singular 

behaviour of the fields along the radial direction. It 
entails e.g. that the line integrals of radial E-fields along 
cell edges needed for Faraday lad implementation 
become: 

jE,dr = k,E,, Ar (6) 
where &Ar is the result of integration assumed in raw 
FDTD, incorporating linear field behaviour. For example, 
the line integral between (.x0, yo) and (x,+Ax, yo) in Fig.1 
now reads: 

/E& = k, Ed dr = k, E,(x0+0.5Lr, yo) Ax (7) 
Such singularity factors k, have also been derived by 
previous authors [2]..[5]. For edges aligned with the 
FDTD mesh and a=0 as in Fig.], they become [3][4]: 

k,= q 2 1.41 (8) 
With reference to Fig.1 and [4], these values of k, will 

also change as a function of radial edge penetration into 
x,x0 or recession into XCQ, but please note that they will 
remain invariant upon cells aspect ratio. They also 
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neglect any angular and vector direction information 
coma&d in eels.(4)(5). Thus, we shall further call them 
“radial models”, and explore as well as correct their 
limitations. 

For clarity, let us focus on TE polarisation in Fig.1. The 
raw FDTD updates the Ed value needed in (7) over a time 
step At through: 

A Ed /At = (Hz - H,) /Ay (9) 
This is equivalent to saying that the surface taken for 

E-flux integration in Ampere law is a flat rectangle 
stretched between the (x0+0.5Ax, yO-OSAy) and 
(x0+0.5Ax, y0+0.5Ayy) nodes, and that Ed comes as an 
average of the so integrated field. However, this is in 
contradiction to eq.(4) since the dominant E-field close to 
the edge is radial and therefore: 

The surface of integration should be an arc 
connecting (x~+OSAx, yo-OSAyy) and (x,+O.5hx, 
y0+0.5Ay), as shown in Fig.lb, of radius r such that: 
?= OS(A.?+Ay*), and length /=r A#. 

The value of A&’ obtained after replacing Ay with I 
in (I 0) does not correspond to the mid-edge value, but 
to the value at x=xO+r. 

Taking advantage of the above two observations, we can 
extend the one-dimensional radial singularity coefficients 
k, towards multidimensional (or stereoscopic) coefficients, 
k= k, k+ which for the case of Fig.1 become: 

(10) 
k= 

Lpdgp5j 

Furthermore, at E, node of Fig.1 we may also take into 
consideration angular field behaviour as sin(@) in eq.(4), 
producing: 

~msi”,0.5~2~,~ 

(11) 
k= 

By physical considerations of field line geometry (see 
Fig.1 right), in the half-plane P=LQ eq.(4)(5) can no 
longer describe the dominant fields and thus eq.(ll) is 
irrelevant for E, nodes. For the case of Fig.1, eqs.( IO) 
and (1 I) yield I .5 I6 and I S7, respectively. 

Let us note that singularity terms for magnetic fields are 
inverses of those for the orthogonal electric fields. 

x0 PX x0 AX 

Fig.1: Electric field patterns (arrows) in the vicinity of 
a metal edge (along cell edge for y=yO, xcrO) inherent in 
earlier radial singularity models [3]..[5] (left) and 
stereoscopic models developed herein (right). 

III. TEM WAVE PROBLEMS 

The first set of tests concerns a shielded stripline shown 
on the left of Fig.2. For the coarsest discretisation of 
a=lmm, the strip is resolved into 2 cells and the slots into 
3 cells. It is important to note that the three FDTD 
algorithms: without any field singularity models, with 
radial models as in [2]..[5], and with stereoscopic models 
proposed herein - all use the same field updating 
equations and differ only in terms of sigularity factors 
applied to radial electric and azimuthal magnetic fields. 
From the numerical viewpoint, an optimum value of this 
factor will be that which leads to a maximally flat pattern 
of characteristic impedance versus discretisation. From 
Fig.2 we confirm that the value of k=l.516 dictated by 
eq.( 10) excellently serves this purpose (red curve). The 
value of 1.41 stemming from radial models provides a 
substantial improvement over raw FDTD, but 
underestimates the strength of singularities. The 
simulations with k 1.53 are overweighed and produce 
decreasing values of impedance with refined 
discretisation. With !~I.516 at Ey nodes and !~I.57 after 
(11) at E, node we obtain a curve indistinguishable from 
the red one. 

Tab.1 lists numerical values of the errors associated 
with the curves of Fig.2. The reference value of 99.8220 
has been obtained through the very fine mesh simulation 
(a=O.Olmm) with kl.516. 
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Fig.2 Characteristic impedance of shielded strip-line for 
various dues of singularity factors: fom the lowest curve up: 
curve 1 - 1.00 (raw FDTD), curve 2 1.41 (radial), curve 3 
1.516 (stereoscopic), ewe 4- 1.53, curve 5 - 1.6. 

raw FDTD radial stereoscopic 
lllllll 17.64 3.54 0.37 

0.5 “ml 9.24 1.81 0.24 
0.25 nun 4.73 0.91 0.12 
~ab.1: Absolute values of relative errors [%I of characteristic 

impedance calculation for three F’DTD algorithms applied to the 
line of Fig.2. 

A variety of tests have been run, confirming that the 
value of k=l.516 remains adequate for inhomogeneous 
(Fig.3) and asymmetrical lines (Fig.4) on equidistant 
meshes. Then, non-equidistant meshes have been 
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analysed as in Tab.2. As expected, the raw FDTD is least 
accurate, and interestingly its error is governed by the 
larger of the cell dimensions. The radial models maintain 
constant factor of k=l.41 after (8) and hence 
underestimate the contributions of E-field integrals along 
shorter cell sides. Their error actually increases as one of 
the cell dimensions is decreased. The stereoscopic models 
are also to some extent susceptible to this phenomenon, 
but retain the error at the level of 1% for aspect ratios less 
than 4: I. 

Fig.3:8Characteri:tic impedanI:of inhomo~ks shielded 
strip line for various values of singularity factors: dotted - l.00 
(raw FDTD), continuous - 1.41 (radial model), dashed - 1.516 
(our stereoscopic model). 

Fig.4 Characteristic impedance of shielded strip line with 
offset strip, for various values of singularity factors; from lowest 
curve up: curve 1 - 1.00 (raw FDTD), cuve 2 - 1.41 (radial 
model), curve 3 - 1.516 (ou stereoscopic model), curve 4 - 1.6. 

*y / AX 1 lmm 1 0.5 nun 1 0.25 mm 
lmm I 17.64 I 14.45 I 16.49 

travel along the metal edge. Now we will consider the 
case of Poynting vector lying in the plane perpendicular 
to the edge (in xy-plane of Fig.l), as for TE and TM 
modes at cut-off. To ensure that we will be evaluating the 
effects of different field patterns and not of drastic 
changes in geometry approximation, we need to analyse a 
waveguide of cross-section resolved similarly as in our 
previous examples, that is, with the coarsest discretisation 
into approximately 10x10 cells and strips and slots 
extending over 2-3 cells. Such an example is a tinline 
available in [6] and shown in Fig.5. Since the method 
proposed in [6] is the most advanced so far, we can 
consider it as a benchmark reference for the method 
proposed herein. 

Fig.5: Geometry of feline 
after [6], constructed in a 
5mm x 6mm waveguide, with 
2mm long fms, shown here 
wth the basic OSmm meshing. 

Tab.3 lists cut-off frequencies of TEeel, TEoel, and 
TMeel modes obtained: in (61 for the 10x12 mesh shown 
in Fig.5; by raw FDTD and with our models, for 
successively refined mesh. The reference values are those 
produced by our method when converged within 0.0025 
GHz, which occurs between 0.005mm and 0.025mm cell 
size. 

I 1 Ref. 1 Raw FDTD Our models I 161 1 

3.54 5.0 7.96 
0.37 0.49 1.73 

[%] produced by raw FDTD, our stereoscopic models, and 

0.5 mm 13.98 9.24 X.46 the method of [6], for specified cell-sizes. 
4.57 1.81 2.39 
0.63 0.24 0.38 Let us start with basic observations on the raw FDTD 

0.25 mm 12.8X 7.24 4.73 
7.35 2.53 

method. For commensurate geometry resolution the raw 
0.91 

1.81 0.16 0.12 
FDTD method induces (on average) twice smaller errors 

Tab.2: Absolute values of relative errors [%I of into the calculated cut-off frequencies of TE modes 

characteristic impedance calculated by raw FDTD (top (Tab.3) than into characteristic impedance of TEM modes 
entries in each table cell), FDTD with radial singularity 
models (middle) and FDTD with stereoscopic singularity 

(e.g. Tab.1). This is physically justified by the fact that in 

models (bottom) for the line of Fig.2. 
TE modes at cut-off only the transverse E-field is 
singular, while the longitudinal H-field, by virtue of (2), 

‘is not. In the TEM wave, both transverse E- and H-fields 

IV. E.%~PLES OF CUT-OFF PROBLEMS are singular as in (4)(5). Their inaccurate approximation 

Examples of Section III confirm high accuracy of the 
causes inversely proportional changes of unit inductance 

proposed stereoscopic models for TEM waves, which 
and unit capacitance, and hence multiplicative error of 
characteristic impedance. 
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please also note that since raw FDTD extrudes metal 
edges and comers, characteristic impedance as well as 
cut-off frequencies of TE modes are underestimates of 
their physical values. To the contrary, cut-off frequencies 
of TM modes are loaded with positive singularity errors, 
compensating and even outweighing the numerical 
dispersion errors. This justifies an apparently good 
performance of raw FDTD for high-frequency poorely- 
resolved TM mode in Tab.3. It also explains why positive 
FDTD errors have been barely reported in the literature, 
while downward frequency shift has been considered a 
major concern [S]. 

The proposed stereoscopic singularity models (lO)(l I) 
enhance the values of radial E-fields at metal edges, and 
further their linear integrals in the radial direction; 
inversely proportionally they suppress the H-field 
contributions. Hence, they serve to restore the singular 
field behaviour on FDTD meshes. The singularity factor 
of I.516 previously confirmed optimum for TEM 
problems also reduces the errors of cut-off frequencies 
extraction to 0.25% on the coarsest mesh. Although not 
shown in Tab.3, it has been checked that lower values of 
the singularity factor lead to poorer convergence for TE 
modes while higher values - to reversed convergence, 
that is, overestimating TE and underestimating TM cut- 
off frequencies. 

v. CoNCLUsIoNs 

New local FDTD field singularity models have been 
proposed. In extension to previous local models, not only 
radial field variation but also the geometry of field lines 
and curvature of Ampere I Faraday integration surfaces 
are taken into account. This changes the values of field 
updating coefficients, but requires no further modification 
of the basic FDTD equations. In spite of such simplicity, 
the accuracy obtained is of the same order as that of a 
specialised higher-order algorithm of [6]. 

As an additional outcome, this work recommends the 
use of characteristic impedance of TEM lines as the most 
sensitive testing function for any new singularity models. 
For comparable and reasonably coarse geometry 
resolution, raw FDTD produces cut-off frequencies of TM 
modes with 2%, TE modes with 9%, while TEM 
characteristic impedance with 18% errors. The 
stereoscopic models suppress all these errors to below 1%. 
The errors of previously used radial models are by order 
of magnitude higher than those of the new approach. 
Moreover, in the case of non-equidistant meshing they 
rapidly increase and reach half of raw F’DTD errors at 4:l 
aspect ratio, while under the same conditions the 
accuracy of stereoscopic models oscillates around 1%. 

Application of stereoscopic and radial models to metal 
edges not aligned with the FDTD mesh lines and 
additional numerical stability constraints arising 
therefrom will be discussed in the Transactions paper. 
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